Mechanisms of synergistic neurotoxicity induced by two high risk pesticide residues - Chlorpyrifos and Carbofuran via oxidative stress.

Mechanisms of synergistic neurotoxicity induced by two high risk pesticide residues - Chlorpyrifos and Carbofuran via oxidative stress.

April 03, 2019 0 Comments

Multi-component pesticide residues, especially pesticide residues with synergistic toxicity, are a serious threat to food safety. With risk assessment, we found that Chlorpyrifos (CPF) and Carbofuran (CBF) are 2 pesticide residues with highest risk for Actinidia chinensis planch. The results showed CPF and CBF have a synergistic neurotoxicity on neural cell SK-N-SH. The toxicity was partly depending on oxidative stress (OS) and had effects on cell apoptosis and cell cycle arrest. Furthermore, the toxicity remained on long-term low-dose condition. This website is for information purposes only.By providing the information contained herein we are not diagnosing, treating, curing, mitigating, or preventing any type of disease or medical condition.Before beginning any type of natural, integrative or conventional treatment regimen, it is advisable to seek the advice of a licensed healthcare professional. © Copyright 2008-2019 GreenMedInfo.com, Journal Articles copyright of original owners, MeSH copyright NLM.



Also in Industry News

Transcriptomic Sequencing of Airway Epithelial Cell NCI-H292 Induced by Synthetic Cationic Polypeptides
Transcriptomic Sequencing of Airway Epithelial Cell NCI-H292 Induced by Synthetic Cationic Polypeptides

April 18, 2019 0 Comments

Copyright © 2019 Ya-Ni Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Eosinophil asthma is characterized by the infiltration of eosinophils to the bronchial epithelium. The toxic cationic protein released by eosinophils, mainly major basic protein (MBP), is one of the most important causative factors of epithelium dama...

Read More

Cancer cells resist mechanical destruction in the circulation via RhoA-myosin II axis

April 09, 2019 0 Comments

During metastasis cancer cells are exposed to potentially destructive hemodynamic forces including fluid shear stress (FSS) while en route to distant sites. However, prior work indicates that cancer cells are more resistant to brief pulses of high-level fluid shear stress (FSS) in vitro relative to non-transformed epithelial cells. Herein we identify a mechanism of FSS resistance in cancer cells, and extend these findings to mouse models of circulating tumor cells (CTCs). We show that cancer cel...

Read More

The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma
The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma

April 09, 2019 0 Comments

IJMS | Free Full-Text | The Role of Fibrosis and Liver-Associated Fibroblasts in the Pathogenesis of Hepatocellular Carcinoma Next Article in Journal New Innovations in Wound Healing and Repair Previous Article in Journal Crude α-Mangostin Suppresses the Development of Atherosclerotic Lesions in Apoe-Deficient Mice by a Possible M2 Macrophage-Mediated Mechanism Previous Article in Special Is...

Read More