Mitochondria-Targeting Protein Nanoparticles for Cancer Therapies - Advanced Science News

Mitochondria-Targeting Protein Nanoparticles for Cancer Therapies - Advanced Science News

April 03, 2019 0 Comments

Cancer is a major threat to human life, which has traditionally had one major clinical treatment method: chemotherapy. But multidrug resistance and harmful side-effects, due to the nonspecific action of chemotherapy, have driven researchers to pursue other therapies with different modes of action. Targeted drug-delivery systems and combination therapies are some options used to address these issues. Protein nanoparticles are regarded as a promising drug-delivery option that could overcome multidrug resistance: they have favorable bioavailability, biodegradability, low toxicity, good solubility, and good tumor targeting ability. Protein nanoparticles have been shown to accumulate in tumors, where they can target the mitochondria—subcellular organelles that are essential to the survival of a cell—of the cancer cells. By specifically targeting the mitochondria, mitochondrial dysfunction can be induced, alongside upregulated production of reactive oxygen species (ROS) that can lead to cell death. Novel self-assembled mitochondria-targeting protein nanoparticles, designated GST-MT-3, have been developed, in research lead by Professor Jian Lin at Peking University. By chelating cobalt ions, the nanoparticles, [GST-MT-3(Co2+)], induce the production of ROS, leading to reduced mitochondrial membrane potential, which inhibits tumor growth. When combined with a low dose of paclitaxel, the nanoparticles can exhibit synergistic efficacy, which prolongs survival time. Prof. Jian Lin comments that; “This work paves the way for therapying multidrug resistance and broadens the application of protein nanoparticle in cancer therapy.” While there may be a long way to go to fully understanding why and how the protein nanoparticles target mitochondria, or if there are other undiscovered potential targeting sites for cancer besides the enhanced permeability and retention (EPR) effect, which mediates the delivery of drugs to tumors, these novel nanoparticles clearly have potential for future combination cancer therapies.



Also in Industry News

Hirschsprung's Disease Genetic Analysis Reveals Mix of Common, Rare Risk Variants
Hirschsprung's Disease Genetic Analysis Reveals Mix of Common, Rare Risk Variants

May 24, 2019 0 Comments

NEW YORK (GenomeWeb) – Genetic factors that contribute to a highly heritable developmental condition called Hirschsprung's disease include a complex suite of risk variants, ranging from common polymorphisms in non-coding elements to rarer coding variants and copy number variants (CNVs), according to new research from investigators at Johns Hopkins University, the University of Washington, the Broad Institute, and New York University. "In our study, we found that the risk of the complex phenotype...

Read More

Correction to: Modulation of lipolysis and glycolysis pathways in cancer stem cells changed multipotentiality and differentiation capacity toward endothelial lineage
Correction to: Modulation of lipolysis and glycolysis pathways in cancer stem cells changed multipotentiality and differentiation capacity toward endothelial lineage

May 24, 2019 0 Comments

In the publication of this article [1], there is an error in one of the contributing author names. The error: ‘Jalal Abdolali Zade’ Should instead read: ‘Jalal Abdolalizadeh’ Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, prov...

Read More

Protein Expression: basic concepts to new directions
Protein Expression: basic concepts to new directions

May 24, 2019 0 Comments

Date: Tuesday, 11 June, 2019 Time: 09:30  – 13:00 Place: Fèlix Serratosa,  Parc Cientific de Barcelona (PCB) This short workshop will describe many aspects of heterologous expression in E.coli, from choice of construct design through to methods to improve the levels of soluble expression and options for co-expression. In addition, it will also address expression in eukaryotic hosts, including secreted proteins and ECDs, and options for co-expression. The workshop will finish with a discussion an...

Read More